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ABSTRACT -  As the computer processing power is being improved, the size of data is being increased. One of 

the most powerful recent enhancements is that of the Graphics Processing Unit (GPU). In last years, almost 

mesh operations and GPU have become linked issues. In fact, the mesh partitioning and GPU are used in 

several computer graphics applications. In this paper, we present an efficient GPU-based algorithm for 

partitioning large-scale 3D meshes. The proposed algorithm is called “Closed Continuous Visible Domain 

(CCVD)” where the processing time, quality and balancing between the parts are our objectives. The 

partitioning process is parallelized on GPU, and we have evaluated the performance of the proposed algorithm 

on various large benchmarks. Several experiments have been conducted to evaluate the performance of the 

proposed algorithm using the Princeton benchmarking. Practically, final results quality is better than the 

common methods, besides those sub-parts are near to the human Perception. Finally, the execution time of the 

proposed GPU-based CCVD partitioning is reduced by approximately 40% of CPU time 

Keywords – GPGPU, 3D Mesh Partitioning 
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I. INTRODUCTION 

In computer graphics and animation, devices have been improved, as the size of 3D mesh data also rapidly 

growing. This improvement is motivated by the needful for more points of interest and higher precision in 

representation and making objects. Various algorithms have been presented to partition large scale meshes. 

These algorithms are classified into two classes according to whether the partitioning is supervised or 

unsupervised. The first class needs post processing, while the second one is not. The post-processing treatments 

has many factors as jagged boundaries, smoothness, refinement or sharpness to purify the details of the shape 

[40], [6]. The set of algorithms that belongs to the first class needs additional time for enhancing the outputs. 

However, the algorithm’s output in the other class was consistent mesh partitioning [36], [20]. Shape Diameter 

Function (SDF) is the most strongly and frequently in the second class. The best approach to partition a shape 

into disjointed subparts is the approach which final result is consistent mesh partitioning [36]. The term 

consistent mesh partitioning in SDF means that at mesh surface, a scalar function is defined. This function 

measures the diameter of the shape’s volume within the neighborhood of all points on the surface. Hence, mesh 

partitioning is the process of decomposing a shape into meaningful parts. This kind of partitioning improve the 

solution of many computer graphics problems such as: modeling [10], shape compression [1], simplification [8], 

texture mapping [21], skeleton extraction [20], and metamorphosis [12], [43]. Geometric descriptions and 

semantic components, are the two ways that almost partitioning algorithms used. In the geometric 

characterization, the mesh is divided into a number of patches with respect to some particular geometrical 

attributes, such as curvature and geodesic distance [11], [35], [8], [42], and [13]. However, the mesh is divided 

into sub-parts that match the related features of the shape based on human perception, that led to the logic 

components [22], [20], [24], and [19]. In [26] discussed the various methods that used for mesh partitioning. 

Many techniques have been implemented over CPU. In this paper, we propose GPU-based partitioning for 

large-scale 3D meshes. Our method characterized by work in a parallel manner. Beside that sub-parts that 

represent the shape are balanced in the points. 

 

 

 

                                               

 

Figure1)   Robust of CCVD in different Armadillo orientations 

Closed Continuous Visible Domain Partitioning of 3D Meshes 

a) 8 sub-parts b) 7 sub-parts c) 8 sub-parts 
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 “Fig. 1” shows that the number of parts looks to be the same. Although, the orientation of the model was 

changed. That show our method is robust against the model orientation. The performance of the proposed 

method is compared with the commonly used methods implemented with CPU. We also generalize the method 

to process the non-manifold meshes. The algorithm presents a great enhancement in terms of processing time 

when compared to the CPU, especially in large scale 3d meshes. 

CONTRIBUTION 
We propose in this paper a parallel method for partition large-scale 3D meshes into a set of disjointed sub-parts. 

Each part will be parallelized and displayed by the group of kernels. In addition, GPU distributes those sub-parts 

over kernels (a set of threads). The distribution of these sub-parts over those kernels enhances the display and 

the visualization of the object. Those sub-parts near to be balanced in size. This step minimizes the workload 

over the stream-processors of GPU that means the load balancing problem is considered. The common and most 

suitable method is the SDF. This method is consistence mesh partitioning. SDF is a volume-based 3D mesh 

function that can manipulate features of a shape, which have similarities by using the consistent method. This 

method also can be used in skeletonization “skeleton extraction” and 3D mesh partitioning. The SDF is a scalar 

function described on the surface of a mesh, which created from the multi-rays that sent from all input points on 

the mesh, to measure the distance of the intersection point. Such beam/ray infusion is a deeply parallel 

mechanism. This task is absolutely ineffective if the processing was on the CPU. Therefore, in the proposed 

approach, instead of sending a single ray at a time, a parallel method for computing SDF that is implemented on 

GPU using MATLAB and Mex C++ utilizing the independence of the beams. GPU properties play the main role 

in the partitioning performance. Our implementation shows the speed difference between CPU and GPU of 

mesh partitioning, especially in large-scale points of mesh. We test it with several benchmarks and evaluate the 

performance on NVIDIA GeForce 710M GPU. In practice, GPU-based partitioning algorithm operates 

extremely rapidly than the traditional one "sequential algorithm on CPU". 

The paper is organized as follows. Section II addresses a brief survey of previous works, this section consists of 

three subsections, subsection II-A shows the difference between CPU and GPU mesh operations, while is 

subsection II-B explains shortly mesh partitioning types, furthermore in third subsection II-C shows the power 

and improvement of the GPU. Our motivation and proposed method are presented in Section III, beside the 

implementation and the performance. Section IV discussed and explained our experimental results. Finally, 

Section V analyze our approach and additional future works. 

II. RELATED WORKS 
3D Mesh partitioning is a fundamental issue in several mesh operations like modeling [10], shape 

compression[1], simplification[8], texture mapping[21], skeleton extraction[20], and metamorphosis [12], [43]. 

Mesh partitioning used as pre-processing step to improve and enhance the final output in many computer 

graphic problems [18], [41]. As well as used directly in sub-parts labeling [17].One of the most traditional and 

famous methods which are used for 3d mesh partitioning is The SDF [36]. One of the latest methods that used 

the SDF for creating closed visible region is called CVF (Continuous Visible Features) [23]. The objective for 

using the SDF in this method is to reduce the traversal of neighboring points (vertices) on the boundaries in the 

shape that represents the input mesh. 

2.1. CPU VS. GPU PARTITIONING 

In the next two subsections, we will focus on the two different partitioning viewpoints. The first is the 

approaches that depend on the visibility scope for 3d mesh decomposition. The other is the different operations 

on a mesh based on GPU.  

1. Mesh partitioning based on visibility points: Analysis and partitioning of the 3D shape provide 

computer graphics and computational geometry with a fundamental data about the spatial data of the 

object. The mesh partitioning is the process of dividing a shape into many sub-parts. Each part stands 

alone as disjoint part. This part work as a new object. Almost points in each part are visible to each 

other whether direct or indirect. The visibility process creates a visible part. Additionally, this process 

distinguished between the points which lie on the inner, the outer, and the boundaries of a shape. The 

visibility process works as a filter the previous case. Many modern works use this visibility scope to 

determine the shape and its parts features and attributes. The visibility and the functionally "meaningful 

parts" is the intuition behind of these visually-based characteristics, Here we will discuss different 

applications based on the visible region. Firstly, The Shape Diameter Function (SDF) [36] is identified 
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by sampling rays in the cone in the anti-normal direction of a side. The aim of this step to obtain the 

thickness of a shape locally within the visible points. The value of SDF is measured be the sum of the 

projected distance of the rays inside the model. However, the SDF may not be matched well to visually 

semantic components if the thickness is not exactly distributed, as the semantic component should have 

the similar thickness anywhere.  

 
Figure 2) SDF: chair with differ features 

 

For example “Fig. 2”, the chair has completely different feature values at its middle from those on the 

boundary. In addition, the feature values at the ends of the leg are also completely different from those 

closer to the chair. Another visible region based on feature is, Volumetric Shape Image (VSI) [25], the 

motive of capturing the general instead of the local volumetric context of the local cone used for 

sampling rays, VSI attempted to sample rays in multiple directions. For computing, the VSI feature 

firstly determining the agent middle for all vertices and then testing ray at fixed direction. The range of 

VSI is obtained by comparing the difference between the sampling of a source vertex and other vertices 

on the mesh. Extra visible region method based on feature is Continuous Visibility Feature (CVF) [23] 

there are two points x and y inside the volume of a shape. Those points are visible to each other if there 

exists a geodesic path π connecting x and y. That means x and y are continuously visible to each other 

(strong visibility). But, in weak visibility, a point is visible and not by the other point (example, point x 

can see point y, while y can’t see x). By using strong visible or weak visible the results directly 

affected. All previous methods are implemented by the traditional way on the CPU (Serial 

programming). The performance changed definitely when those method implemented on GPU. The 

time which the system memory and CPU shared time applications, change the exact performance time. 

While the dedicated memory of GPU gets the real-time execution. So, the new trend in many computer 

graphics and many computational geometry problems are using GPU as a platform for solving those 

problems. Nowadays, NVIDIA Company provides many types of GPU, according to the application 

applied and the utilization. In last years, there are many methods used GPU to improve the performance 

and enhance the final results. 

 

2. Mesh partitioning types: All GPU architectures can help to solve different computer graphics 

problems. The goodness and the quality of those results which applied on GPU is better than those 

done over the CPU, whether this problem is small or large. Both tiny and very complex problem not 

considered. Here, the discussion about the problems which applied on GPU. Many mesh operation use 

GPU to increase and enhance both the performance and the output. When the parallel computing 

applied on the mesh operations, it minimize the time performance and increase the visualization output. 

In [41] mesh decompression based GPU, the prime step is to partition the shape by Edge breaker [34], 

then decompression the results of patches over the threads of GPU. The major advantage of partitioning 

step is reducing the replicated vertices among patches, and balancing the numbers of faces of the 

results patches. While the results of patches need post-processing step to refinement the boundaries 

between the faces. The extra process done because the results are jagged boundaries needed to be 

swapped to fix jagged boundaries. Other mesh based GPU is to recognize the objects within an image, 

it is a primary operation in labeling objects [18]. The connected component labeling (CCL) is the most 

commonly used approach to this issue. Although CCL is not easy to be implemented in a parallel way 

as the joined pixels can be only located primarily by graph traversal. The CCL GPU-based algorithm is 

a good platform for fast object identification in large-scale images. Otherwise, those mesh operations 

are applied on CPU or GPU. The mesh partitioning is a common mesh operation. This process known 

also as mesh partitioning or segmentation. Mesh partitioning divided into two main types, which 

different methods and procedures can be used. While in [3] presents two approaches for the 
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computation of the SDF on the GPU are described and compared. (The SDF is a scalar function 

describing the local thickness of an object. SDF can be used for consistent mesh partitioning and 

skeletonization). In the first approach is facilitating reorganized the tracing of the rays to be completely 

adapted for the rasterization hardware. The second approach utilizes parallel ray casting and an octree 

traversal by using OpenCL. 

 

2.2. MESH PARTITIONING TYPES 

 

 

 

 

 

                 a) 3D volumetric Partitioning               b) patch partitioning 

             Figure 3: 3D volumetric vs 2D surface partitioning 

Here, we should refer to that we have two differ types of partitioning. The first class is Part Type 

partitioning, while the other is Surface Type partitioning “Fig.3”. The major variation among the two 

classes has relied on a separate detail and the view that the object being partitioned, both a 2D surface 

and a 3D volumetric representation. We will concentrate on the first class. This type utilized in 

studying of humanitarian understanding. Testing human image perception several attempts mean that 

perception and shape recognition are based on structure mesh partitioning the shape into smaller 

components or sub-parts[15], [4], [14]. Because of this purpose, part type partitioning segments a 3D 

mesh to separate parts that oftentimes matched to the bodily 3D semantic components of an object. 

New comparable studies on the outcomes of some region type mesh decomposition procedures can be 

located in [2]. While in [28] and [29], region type decomposition is generated relied on investigating 

the junction curves/sweeps of the ball concentrated nearly all vertices. The investigation partitions a 

shape into related parts that are either body’s parts or extended characteristics, like protrusion 

characteristics. Part type partitioning was useful in modeling by collecting the object’s parts to inspire 

modern layout [10]. As well, utilized for generating toys as in [32]. Segmenting, recognizing and 

matching object parts can serve shape identifying and retrieval, and shape restoration [44], [30], and 

[31]. This part identification can be utilized in morphing [37].Lastly, segmenting object into parts has 

also assisted in skeleton creation[20], [38], [27], which was utilized in object deformations as well as 

object animation. Both 3D volume and 2D surface type not easy or difficult to be implemented in any 

computer environment. This environment affects the performance and the goodness of the results. Both 

height performance and a good result provide GPU environment. GPU considered by many computer 

graphics researchers the suitable environment for achieving various tasks related to those types. 

2.3. HEIGHT PERFORMANCE AND PARALLEL COMPUTING USING GPU 

Recent GPU provides the highest-throughput for computer graphic processors, which have a technical 

peak rendering of a few Tera-Flops. The generality of these GPUs work on the SIMD (single-

instruction multiple data) foundation and the producers are executed concurrently by performing a 

large-scale number of threads. On the broad, GPU consist of multi processors (MPs), each of them has 

a number of streaming processors (SPs) and a small shared memory system. For example, in our 

implementation run on NVIDIA GeForce 710M GPU (Architecture Fermi with code name GF117-

N14M-GL). This GPU has 2 Multiprocessor (MPs), each MP contains 96 CUDA cores (Compute 

Unified Device Architecture) or streaming multiprocessors (SMs) and each CUDA core can run 48 

threads. The power of GPUs scales is linearly with the number of cores. To completely utilization of 

the computational capabilities of the recent GPUs, a good work decomposition scheme needs to be 

designed. GPU methods have been universally used for differ mesh operations acceleration, and this 

paper proposed the new method for decomposing the large-scale 3D mesh. To investigate the 

utilization of GPU in the geometrical processing purpose. 
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III. PARTITIONING LARGE-SCALE 3D MESHES 
Recently, several computer graphics problems solved by using GPU platform in order to increase the 

effectiveness of the final results. Many computer graphics problems can be decomposed into disjointed sub-

problems to get solved efficiently, especially large-scale problems and mesh partitioning problems. In most of 

those problems, GPU is the best candidate environment that can be rapidly used. Now, many mesh operations 

and GPU platform are considered a linked issue. Mesh partitioning is a common operation that helps and 

simplify many mesh analysis problems to be manipulated. Partitioning a large-scale 3D mesh based on the GPU 

is an integrated problem, decomposing is the problem and GPU is the environment which used as a solution 

platform. 

3.1 Motivations of the paper 

Advances in 3D scanning technologies have enabled the practical creation of meshes with hundreds of 

millions of polygons. One problem with 3D scanners, however, is handling the large amounts of data they 

produce. In fact, traditional algorithms for display, simplification, and progressive transmission of meshes 

are impractical for data sets of this large-scale size. Therefore a partitioning of this kind of 3D meshes 

should be performed. In addition, storing and displaying a collection of large-scale meshes is not suitable 

for traditional system memory. Therefore, the world last year’s offers and suffers in many fields from the 

big data spatially in computer graphic. Computer graphics have many problems that in need to be treated 

and solved. Whereas the computer main memory which occupied by running OS and many applications 

concurrently. Although the system memory function is very significant, its capacity is limited. As well as, 

the finite numbers of cores. In order to the limitation of the memory and cores of CPUs and the large-scale 

size of 3D models that computer graphics used, the partitioning of many large 3D models still necessarily to 

be handled in the non-arbitrary algorithm. Our algorithm partitioning a large scale 3D meshes into many 

sub-parts, which will meet the multi-thread architecture of GPUs. Then we want to get the result of 

partitioning contains fewer replicate vertices. As well as, we should to made each sub-part had a balanced 

number of faces, that led to the partitioning speed will be optimized. Generally, in the last years, the trend 

toward using GPUs for general computations can be observed. The breakthrough for these approaches came 

with the introduction of large data set processing. “Fig. 4” shows the great difference between the 

architecture of CPU and GPU in amount of memory and the number of cores located. 

 

Figure 4) CPU vs. GPU Cores 

While “Fig. 5” explains the difference between Fermi vs. Kepler GPU technology. If you have a GeForce 

710M graphic card with 2GB of graphic memory, for example, that memory is fully separate from your 

computer’s 8 GB of system memory. Dedicated cards are a perfect way if we are going to professional tasks 

of a large-scale computer graphic issues. 

 

Figure 5) Fermi Vs Kepler architectures 
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3.2 The Proposed method 

Given an input volumetric mesh , we use the following abbreviation: the set of n verities {v1; v2;…; vn}, 

the positive domain of the shape (inside the volume of a shape) D meaning that “ positive domain D is the 

volume of a shape but not seen by any visible vertex v of a triangle ∆T, the continuous visible triangle ∆T 

that contains the visible vertex v, the set of visible triangles T that contain the set of visible verities and 

finally the closed continuous visible domain CCVD. The overview of the proposed method is summarized 

as follows:  Filter the faces: The core of this step is to ensure the outside continuous visible area of a vertex 

v1, then find the set of continuous visible triangles crossbreeding to the visible vertices from positive 

continuous domain.  

After that and recursively, getting the boundaries between the positive area of a shape and the continuous 

visible triangles of a visible vertex. The intention of this step to get the interior edges of a shape by applying 

the geodesic distance manner. 

- If ∆T and v1 of tetrahedron of the positive volume  of a shape, then T is a positive triangle 

- Continuous positive domain D of a vertex v1 is a set of positive triangles T  that directly 

connected to this vertex 

- Clearly that, a set of vertices vs is continuous visible area must be a subset of triangles Tv  

- Constructing Tv 

Finding the boundaries between contentious positive domain of a vertex v and continuous visible 

triangle Tv  (recursively): 

- Searching for a vertex v2 that adjacent to Tv1 and directly connecting to the vertex v1,  

where v2  Tv1 

- This process done iteratively, by searching and connecting two disjointed verities v2 and v3 

 (where v2 and v3 are adjacent to Tv2, v3   ∆Tv2). 

- By constructing the similarity matrix which each entry’s value to be 1 for visibility and 0 for 

invisible. Basically, there exist a geodesic path π connecting v1 and v2 and π must be cross a 

boundary at least between CCVD v1 and Tv1 

-  A geodesic path π connecting v0 and v1 and π must be cross a boundary at least between CCVD v1 

and Tv0 

- Now, we will search for the third vertex v3 that closest to π and v1 that invisible to v1.The next 

vertex v4 be the far and last visible on π.The π geodesic path may not be the shortest path between 

tow disjoint vertices. 

                                                ∃π such that ∀π1∈π, vπ1∩m=∅,  

where π is a geodesic path that connecting two vertices on mesh m. 

- Further, v4 is continuous visible vertex, and edge e = {v4; v3} that connecting v4 and v3 must by 

boundary edge. After that, we will finding all boundaries as we get the first edge e. This process is 

done firstly by identifying the visibility of the third vertex v3 of the ∆t that adjacent to e. By 

moving on the boundaries edges e1 ≠ e of ∆t. [see Table I] 

 

Table I) Weak visibility vs strong visibility 
Points classify Visibility Domain 
Strong Each points v and u is visible to each other 

Weak A point v can be visible by point u while the point u can’t see point v 

 

- The last vertices also are pair of a visible and invisible. Note that, the closed loop 
eliminate the vertices that not continuous visible by Tv1 
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Algorithm 1: Closed Continuous Visible Domain (CCVD) 

 
Data: 3D models 
Result: 3D mesh partitioning 
Repeat                                                 // Host procedure 

  Face  where direct seen by is , and visibility region unallocated Do 

 Find a next vertex  

 Find a geodesic path , which connecting and  

  

 is direct see  

 and are in the same part 

 Set  is the first edge 

  visible by , while  isn’t visible by  

  

 Repeat                                         // Kernel procedure 

  Let by  be a vertex can be seen by  and  

  If  can be seen by then 

    

   Else 

     

   End 

  End 

  List  

 Until List is closed loop 

  vertices that direct close connected to  without intersection      // Device procedure 

 List has been invisible from  

Until all  are partitioned 

 

 

The steps which is shown in “Fig.6” explains the 3D mesh partitioning optimization diagram. Firstly, a model 

3d mesh represented (.OFF file or other suitable format) as input mesh. Then get the triangulation of the input 

model. Third step is responsible for eliminating the replicated vertices by minimizing the traversal vertices or 

points this step known as mesh simplification or optimization, as we see in “Fig. 7”. The fourth step is a 

recursive step for partitioning the neighboring points, facets, and vertices according to the visibility term. If all 

points are get partitioned, we get the adaptive sub-parts. Notice that in [Table I] shows the difference between 
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two visibility points. The strong visibility is better than the weak one, as Ɐ Points Pi ∈ Region Ri are visible to 

each other. This meaning that final results are semantic components. Now we will show the step that run on 

GPU to increase the performance of the proposed method 

 

Figure 6) 3D mesh partitioning optimization flow diagram 

 

 

3.3 Implementation 
 
In this section, we will describe our implementation for partitioning large-scale 3d meshes on GPU, and the 

performance of our algorithm on various benchmarks. We use MATLAB R2015a (64-Bit) for the core 

assignment and Microsoft Visual C++ to enable C-MEX for compile C++ code in MATLAB for 

partitioning and parallel processes. MATLAB Executable (MEX) is designed to support using C++ codes 

inside the MATLAB IDE to perform rapidly executing and avoid many application bottlenecks. We call C-

MEX for executing C++ codes. We work on CUDA toolkit 7.5 as the development environment for GPU, 

and also using NVIDIA Visual Profiler to estimate the kernel performance time, the data input and output 

time among GPU and the system or host memory.  

We wrote our implementation c-Mex files for several goals: 

1. Reusing C++ functions inside MATLAB. 

2. Increasing the speed. 

3. For unlimited custom extensions 

The sequential version of partitioning runs on the machine with the properties that shown in [Table II] 

Partitioning the mesh into meaningful parts is a basic step toward many mesh operations. The familiar 

operation is the semantic part-based shape analysis. The SDF is the good method which was used in a shape 

analysis. This method was implemented in CGAL [9], [5]. In the proposed method had modified CGAL 

a) Original Model b) 3D triangulation c) Visibility simplification d) 3D partitioning 

Figure7) Reducing the replicated vertices by mesh simplification 
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implementation by replacing CCVD instead of The SDF. The real SDF consists of two steps, first is GMM 

(Gaussian Mixture Model) [39] the distribution of the feature values. The final step is to partitioning a 

shape by applying the k-way graph cut. The first one run in CPU, then switching to GPU to achieve the 

second step. Here, we have two main factors the speed and time which only GPU that can get better 

performance rather than CPU. 

Table II) Machine and graphic card properties 
Processor Inter(R) Core i5-4200M CPU @ 2.50 GHz 

RAM 4.00 GB system memory 

CPU NVIDIA Series 710M (dedicated memory 2GB DDR3 ) - Fermi type 

OS 64-bits OS , 64x based Processor 

In the previous section we had explained the proposed algorithm. Here, we will clarify GPU performance. 

GPUs allow manipulation of 3D dimensions faster than CPU. GPUs’ memory bandwidth sometimes greater 

than CPUs memory. Therefore, GPUs appear to be well suitable to accelerate all operations that operate on 

3D large scale volumetric data set in independently way; e.g., for transformations, filtering, aggregation, 

partitioning or other “Big Data” as Fig. 8. 

 

 

 

 

 

Figure 8) Partitioning created by CCVD 

3.4 Performance 

The proposed method is implemented in CUDA structure, NVIDIA GeForce 710M GPU which runs (65535* 

65535* 64) threads concurrently in the system. In addition, the NVIDIA GeForce710M GPU has 2 streaming 

multiprocessors (SM), each SM contains 96 CUDA cores and each CUDA core can run 48 threads, so the peak 

thread of 710M is 9216. For the memory latency and limited capacity of graphics memory, the real power in 

maximum cases extremely lower than 9216. The machine and the NVIDIA card properties are shown in [Table 

II]. The machine properties play sub-role in our method, because the provided graphic card is Fermi type. There 

is a short time shared in the system memory. Using a high-performance computing environment will improve 

the execution time of the partitioning algorithm which works on processing large-scale data. A high-

performance computing environment executes the parallel algorithms of the mesh partitioning on a distributed 

environment. A distributed environment can be applied using GPU (Graphics Processing Unit) [18]. 

The performance of both CUP and GPU is near to be equal in small or simple models. But, there is exist a great 

Difference between them when we applied the procedure on huge complex models. Although, many 

benchmarks avoid the complex and tiny models from the comparison. Hence, parallel implementation of CCVD 

algorithm have been very successful especially in large or huge scale. By using the models from the Princeton 

Segmentation Benchmark [7]. Our implementation run over machine with the following properties. 

Both replicated vertices and running time had been minimized. 

 

- Acceleration of mesh partitioning 

Our proposal method principally focuses on the speed of partitioning large-scale mesh. The 

method implemented on computing environments with commodity CPUs and GPUs. The 

experimental results were collected from the tests on a system with i5-4200M CPU 2.50 GHz CPU 

and GeForce 710M GPU “Fermi”.  

o System memory vs dedicated memory: Shared system memory indicates sharing of the 

system local memory with the on-board graphics chip. While in dedicated VRAM means 

applications using memory for all graphics purposes (like rendering, visualization, 

morphing, and partitioning) will use only the memory on the discrete graphics card thus 

drastically improving the performance. 

b) Plane a)  Armadillo c) Pier d)  Octopus 
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o CPU-based CCVD vs GPU-based CCVD: The proposed algorithm tested on both CPU 

and GPU. For comparing the performance of both processors. Clearly, the running time 

which required by CPU-based CCVD is greater than GPU-based CCVD. “Fig. 9” shows 

that when the processed model is about 4k vertices the running time is near to be the 

same, as the models (Glass, Plier, and fish). While, when models are greater than 6k 

vertices the running time is changed, as the models (Ant, Armadillo, and Fourlegs). 

 

Figure 9) the proposed method performance on both CPU and GPU 

IV. EXPERIMENTAL RESULTS 
The recent improvement in the power of graphics processing units (GPUs) has overturned us to a viable 

platform for many computer graphic applications. We had given an overview of the traditional partitioning 

techniques in [26]. In this paper, we will focus on leveraging the power of GPUs in order to obtain high-

performance partitioning of a large-scale 3D mesh. The proposed method is the interactive process, with the 

premise that these algorithms will lead to faster and higher-quality in 3D mesh analysis problems in the near 

future. Subsection 33.3 shows the computer environments that we used. In order to verify the efficiency of our 

method, we compared the performance of our method with the most commonly used method. SDF is the 

frequently method which used for mesh partitioning in CGAL computational geometry library. We run the 

proposed method which is called CCVD over both CPU and GPU. There is a variation in execution time 

especially in large-scale mesh the reference method was proposed in [36] and implemented with CGAL 

libraries. We will see in “Fig. 10” there exist 8 parts by using CCVD, while 23 parts for the same model. Which 

led to more times, storage space and other CPU resources. 

 

 

 

 

 

 

(a) CCVD 8 sub-parts          (b) SDF 23 sub-parts 

Figure 10) Armadillo partitioning: CCVD vs. SDF 

While in Fig.1 the Armadillo model in different orientation, the number of segments extremely not changed. 

That means CCVD is robust to the orientation of the model. For extra results, “Fig. 10” Comparing two different 

methods for mesh partitioning is the factor that shows quality and performance for each them. William Rand 
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[33] and Hubert [16] proposed a correlation function that modified an issue of comparing two distinct partitions 

methods with the probable change number of categories into an issue of computing pairwise label similarities 

Table III: Compare RI score between CCVD and SDF 

Model CCVD SDF Diff 

Human  0.14 0.18 0.04 

Cup 0.37 0.36 -0.01 

Airplane  0.15 0.09 -0.06 

Teddy  0.07 0.06 -0.01 

Octopus  0.04 0.05 0.01 

Plier  0.28 0.38 0.1 

Table  0.12 0.18 0.06 

Armadillo  0.08 0.09 0.01 

Vase  0.16 0.24 0.08 

Fourlegs  0.15 0.16 0.01 

Ant  0.04 0.02 -0.02 

Chair 0.1 0.11 0.01 

Hand  0.13 0.2 0.07 

Fish 0.19 0.25 0.06 

Bird 0.11 0.12 0.01 

Average 0.142 0.166 0.024 

 

The evaluation measured by Rand Index (RI) metric [33], [16]. The RI scores of CCVD and SDF are shown in 

the [Table III], those values show the improvement that occurs on SDF significantly in the table which has 

13926 vertices (from 0.38 to 0.28) and also Plier which has 4487 vertices (from 0.18 to 0.12). Our proposed 

method improves other categories RI values, with the exception of the airplane and the hand. Generally, we 

notice from fifteen models the CCVD method CCVD get better RI values than SDF. Notice that the small RI 

value indicates powerful similarity to the human-made partitioning. Furthermore, “Fig.11” shows the 

improvement of CCVD results compared to SDF. 

Note that: 

- The results is consistent, there is no need for post-processing process as in the other methods. 

- Many methods are in need for post-processing process like smooth, over lapping, shifting, 

refinement, and treat boundaries, while our proposed method robustness. 

Limitation  

Limitation of CCVD, the set of the vertices and points separating the wings and airplane body can directly 

continuously see both the wing and body. The output in large-scale values can create the partitioning cuts to be 

in the center of the wings (plane or bird) model. This red domain may cause poor partitioning “Fig. 12”. 
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     (a) Bird                     (b) Airplane 

Figure 12) Critical region (in red color), may cause poor partitioning 

 

ANALYSIS 

Our proposed approach maps well to recent GPUs, we evaluated the GPU performance and received high 

acceleration rate. The benefits and the power of our method are: 

- Mapping the partitioning process to GPU architecture, keeping all patches are topologically 

equivalent to a disk, 

- Robust to the model orientations 

- Load-balanced between the patches 

- Completely use the parallelism technique on commodity GPU. 

- The performance scales nearly be linear with the number of sub-parts. 

- The input/output data time from GPU to host memory is approximately small compared with the 

whole time for partitioning the large 3D models. 

- The final results is consistent mesh partitioning 

-  Real time execution on commodity GPU 

-  Tiny “very small” and very complex models are not considered in our implementation 

- Accuracy, visualization 

- Parallel mechanism (GPU) run more faster than sequential represented methods (CPU) 

 

 

 

 

 

 

 

 



RESEARCH INVENTY: International Journal of Engineering and Science 

Vol. 8, Issue 2 (May 2018), PP -18-30 

Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com 

30 

 

 

 

F
ig

u
re

 1
1

: 
R

I 
sc

o
re

 c
h

ar
t:

 C
C

V
D

 a
n

d
 S

D
F

 



RESEARCH INVENTY: International Journal of Engineering and Science 

Vol. 8, Issue 2 (May 2018), PP -18-30 

Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com 

31 

 

V. CONCLUSION AND FUTURE WORKS 
We presented a new method for a parallel partitioning large-scale 3d meshes joined on GPU kernels. Which 

requires fewer boundary points/vertices repetition and balanced faces/points number for each part. Our approach 

is flexible and the partitioning procedure maps well to commodity GPUs. In practice, our method improves the 

performance of mesh partitioning on current GPU architectures. We observed that the proposed method runs 

extremely faster than the traditional CPU-based partitioning algorithms, especially in large-scale “Fig. 9”. In 3D 

volumetric partitioning is a fundamental part of different mesh analysis issues, and although many mesh 

operations had been developed, 3d mesh partitioning is still often done by the traditional way on CPU. 

Unfortunately, this is a very time-consuming and tedious process. A very hopeful method to trying this problem 

and generation the partitioning in an interactive way.  

In this paper, we present an efficient GPU implementation of partitioning large scale of 3D meshes, was 

proposed. The method exploits the high performance partitioning based on GPUs to improve the performance of 

large-scale data. The experimental results show that the proposed method can be a good solution to the mesh 

partition in large-scale data. There are several avenues for future and later work. We would like to perform the 

partitioning step faster. We would consider improvement that can get both meaningfulness and balance in the 

partitioning. What is extra, we can spread our partitioning approach to accelerate other mesh operation and 

analysis methods. The recent commodity GPU plays the significance role in almost of those steps. As the 

NVIDIA Company offer four types of GPU. The proposed method are implemented and testes under Fermi 

type. While the other three types (Kepler, Maxwell, and Pascal) get different results. Next days, a new 

technology is introduced, seldom the old one had been much cheaper cost and therefore continues to be a good 

price/performer as there is no limit of the life. The power of human-brain and imagination have no ends see 

“Fig. 5". 
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